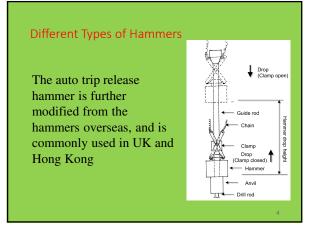
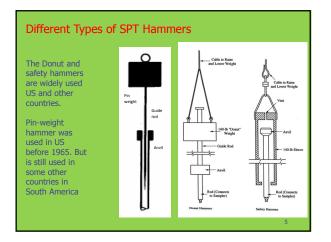
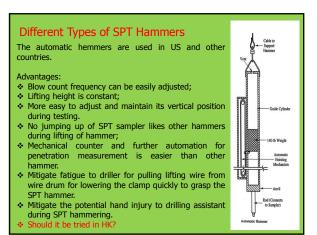

The Practice of Standard Penetration Test in Hong Kong and Its Improvement

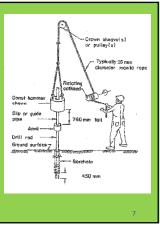
By Ir. Raymond S M Chan, Bachy Soletanche Group

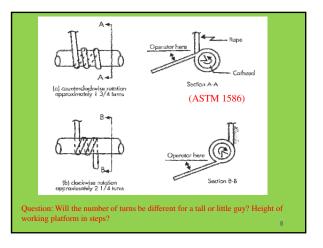





♦ Figure taken from BS 1377: Part 9: 1990 (BSI,1990).
♦A slightly enlarged inner diameter of the spilt barrel is permitted, provided removable liners are always used which have an inside diameter of 35mm.
♦A ball valve in the base of the coupling as shown in ASTM1985a is also permitted.

ermitted: where the set of the





- The rope and cathead Donut hammer is driven by manual release with rotating drum.
- The rope and cathead system for auto trip release hammer had occasionally been used in Hong Kong since early Nineties.
- It has been experienced that different skills for personnel will have different efficiencies.

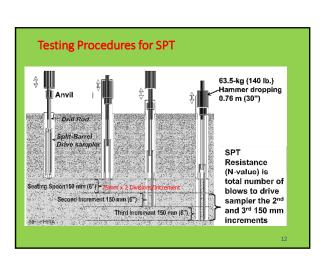
National Standards for Standard Penetration Test Country Own standard Use of other standard Argentina ASTM D1586 ASTM D1586

Argentina		ASIM DI580
Australia	SAA Test 16A (1971)	-
Brazil	NBR 6484 - 1980	-
Canada	CSA A 119.1 - 1966	-
Czechoslovakia	CSN 73 18 21	
Egypt		ASTM D1586 and 1377
Greece	_	Earth Manual (USBR, 1963)
Hong Kong	_	BS 1377:1975 (Revised, 1990)
India	IS:2131 - 1963	-
Israel	_	ASTM D1586
Iraq	_	ASTM D1586
Italy	—	ASTM D1586
Japan	JIS 1219, 1976	
Mexico	-	ASTM D1586
Nigeria		BS 1377:1975
Norway		Terzaghi & Peck (1948)
Poland	*	
Portugal	*	
Saudi Arabia		ASTM D1586 and 1377
South Africa	_	ASTM D1586
Spain	_	Terzaghi & Peck (1948)
Switzerland		ASTM D1586
Turkey	TS 1900 - 1975	
United Kingdom	BS 1377:1975	_
United States	ASTM D1586-67	
Venezuela		ASTM D1586
	da's	
* standard thought to	exist, but designation unknown	L

B) TESTING PROCEDURE

Executing the test:

2.


- Lower the sampler assembly to the bottom of the borehole on the drive rods with the drive assembly on top
- Record the initial penetration under this total dead-weight. If the initial penetration exceeds 450mm omit the seating drive and test drive and record the "N" value as zero.
- After initial penetration, carry out the test in two stages:
 a. Seating drive:
- The number of blows of the drive hammer required to achieve each 75mm of the shoe penetration until a total of 150mm has been achieved shall be recorded.
- If the penetration of 150mm is not achieved after specified number of blows (refer to the individual Contract requirement) of the drive hammer, the penetration achieved (in mm) shall be recorded and the test continued with the test drive from that point.

b. Testing drive:

- The number of blows of the drive hammer required to achieve each 75mm of the shoe penetration until a total of 300mm has been achieved shall be recorded.
- If the penetration of 300mm is not achieved after specified number of blows (refer to the individual Contract requirement) of the drive hammer, the penetration achieved (in mm) shall be recorded and the test terminated.
- The N value shall be recorded as the sum of number of blows of the drive hammer required to achieve the last 300mm of shoe penetration OR the sum of number of blows of the drive hammer with the penetration achieved during the test drive for the case where full penetration is not achieved.

c. Removal of the sample and labeling:

- Raise the drive rods and open the sampler. The liner containing the Common Ground sample shall be sealed in accordance with Cl. 7.56 of General Specification for Civil Engineering Works, 2006 Edition.
- Small disturbed samples recovered from the driving shoe of the sampler shall be placed in a plastic container of minimum diameter of 100mm.

Adopted (Table 2: TN2/97, CEDD, 1997)										
	Geoguide 2	1995 GEO Term Contract Specification	BS 1377:1975	BS 1377: Part 9:1990	Decourt et al (1988)	ASTM				
Hole diameter	60 mm - 200 mm	65 mm - 100 mm	not specified	65 mm - 100 mm	63.5 mm - 150 mm	56 mm - 162 mm				
Rod diameter	BW (54 mm)	AW (43.7 mm), BW (54 mm) for holes deeper than 20 m	AW (43.7 mm), BW (54 mm) for holes deeper than 15 m	AW (43.7 mm), BW (54 mm) for holes deeper than 20 m	40.5 mm, 50 mm, 60 mm	A (41.2 mm)				
Weight of hammer	63.5 kg	63.5 kg	65 kg	63.5 kg	63.5 kg	63.5 kg				
Use of 60° cone	permitted	permitted	permitted	permitted	not permitted	not permitted				
Use of liners	not permitted	permitted	not permitted	not permitted	not permitted	permitted				
Use of core-catchers	not permitted	not permitted	not permitted	not permitted	not permitted	permitted				
Hammer release mechanism	automatic trip hammer	automatic trip hammer	"slip-rope" method ⁽¹⁾	automatic trip hammer	not specified	automatic (or semi-automatic) trip hammer, "slip-rope" method ⁽¹⁾				
Rate of hammer application	not specified	not specified	not specified	not specified	30 blows/min	not specified				

Testing Procedures with Good Practice

Hammer drop rate-Most test standards request SPT blows at a rate of 20 to 40 blows per minute (bpm);

the wash boring method or rotary drilling with a tricone bit should be used to minimize soil disturbance;
water or drilling mud in the borehole should be used to minimize the reduction in vertical effective stress within the soil at the sampling location;

water and drilling mud must be maintained at or above the groundwater table;

14

16

18

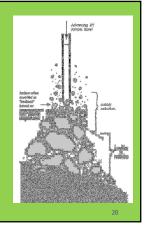
Testing Procedures with good Practice

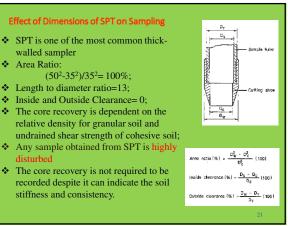
- casing should not be extended below the bottom of the boring before the SPT is performed;
- the measured N-value should be taken from the penetration between 150mm and 450mm.
- the bottom of the boring should be between 64mm and 153mm in diameter, although a minimum diameter of 100mm is preferred;
- The first 150mm below the bottom of the boring is considered to be disturbed material;

the second s	D			- · · ·
Indefind	Procod	ures with	aood I	Practica
resultu	I IUCEU		uuuu i	Iacuce

- stainless steel or aluminum liner of 35mm shall always be provided no matter liner is required or not (Not at all, and even not aware by some site engineers);
- sealing with wax at two ends of the liner shall be treated the same as an undisturbed driven or mazier sample does;
- a core catcher can be provided at bottom of the liner in order to trap the uniform sand from dropping down to the hole.

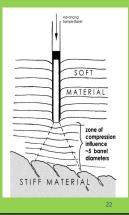
-													
	Soil identification	Establish vertical profile	Relative density Dr	Angle of friction ϕ	Undrained shear strength S _a	Pare pressure u	Stress history OCR and Ko	Modulus: Es, G'	Compressibility mv and Cc	Consolidation c _h and c _r	Permeability k	Stress-strain curve	Liquefaction resistance
	C C	в	в	с	с	A	с	с		в	A		с
Electrical friction Electrical plezocone Mechanical Seismic down hole Dilatometer (DMT) Hydraulic fracture	СВАВСВ	A A A A C A	B B B B C B	COBC C	C B B B B B	A B	CUAC BB	B B B A B	СВСС	A C	B C	в В С	C B A B B B B B
Pressure meter menard Self-boring pressure Screw plate Seismic down-hole Seismic refraction	CBBCCCB		ABCABC	B B A C	C B A B	A	B C A B B		B A B	C A C	C B C	BCABB	B C A B B B B B
	В	В	в	С	ĉ		5		С			-	Α


D) Advantages for SPT


- Relatively simple and quick to perform to obtain relative density of sands and gravels, and consistency of soils (silt and clay);
- widely used with correlations of many other geotechnical parameters.
- able to penetrate dense layer, fill and gravel and fill.
- disturbed sample can be obtained during testing for laboratory testing.
- numerous case histories of soil liquefaction during past earthquakes are correlated with SPT N values.

E) Disadvantages for SPT

- The SPT does not typically provide continuous data and sample;
- Limited application to cohesive soils, gravels, cobbles and boulders.
- if no liner is required during the testing, driller quite frequently removes it from the split barrel that affects the SPT value taken.
- •It senses to penetration, and the blow counts will increase resistance markedly, even sampling in soft materials.
- •As SPT cannot recover gravels or clasts with size of greater than 35mm, it often leads to erroneous assumption that bedrock is encountered or drilling refusal is reached.


it often leads to erroneous assumption that bedrock is encountered or drilling refusal is reached

 $\dot{\mathbf{v}}$

E) Disadvantages to SPT

Because of different termination criteria stipulated from different General Specifications from different governmental departments, it always c in field operation by technicians and drillers.

In lack of enforced and consistent standardization for drilling technique, SPT equipment and operation method in the world, the results and derived parameters from SPT in different regions cannot be mutually referred and adopted.

Unnecessary excessive N blows in rock always causes damage of sampling shoe, and this triggers possible fraudulent operation, and increase workload to residential supervisory staff.

E) Different Termination Criteria Adopted Locally 1. For GEO Term Contract: Seating Drive Test Drive Remarks Summary In accordance with Cl. 7.68 of General Specification for Civil Engineering Works, 2006 Edition. 17,25 25,27,22,23 N=97 Full penetration Test terminated at 17.25 38.62/50mm 100/125mm increment 4 Test terminated at 17.25 35.27.38/30mm 100/180mm increment 5. Seating 50 Drive: Test drive commenced after 50 blows in the 27,23/35mn 25,27,22,23 N=97 blows seating drive. Test Drive: Test drive commenced blows fter 50 blows in seating 20/35mm 35,27,38/30mm 100/180 ive. Test terminated increment 3. 24

F) Differen	t Terminatio	n Criteria

Seating and test drive shall be terminated under following blows of drive hammer if the achievement of the specified penetration of 150mm and 450mm respectively could not be

2. ASD Term Contract :	Seating Drive	Test Drive	Reporting Format	Remarks
Particular Specification for Ground Investigation	17,25	25,27,22,23	17,25 25,27,22,23 N=97	Full penetration
Seating Drive: 50 blows	27,23/35mm	25,27,22,23	27,23/35mm 25,27,22,23 N=97	Test drive commenced after 50 blows in the seating drive.
Test Drive: 200 blows	17,25	18,31,151/35mm	17,25 18,31,151/35 (200/185mm) N>200	Test terminated at increment 5 in the test drive. 25

3.	For Housing Contract:	Seating Drive	Test Drive	Summary	Remarks
	Seating Drive: 50 blows	27,23/35m m	35,27,32,31	N=125	Test drive commenced after completion of 50 blow in the seating drive
	Test Drive: any of the first three	50/20mm	38,100/50mm	138/125mm	Test drive commenced after completion of 50 blows in the seating drive: test terminated in increment 3
	increment of 75mm penetration is not achieved	50/20mm	100/40mm	100/40mm	Test drive commenced after completion of 50 blows in seating drive; test terminated in increment 2
	after 100 blows of the	17, 25	38,100/50mm	138/125mm	Test terminated in increment 4
	drive hammer OR	17,25	25,30, 100/50mm	155/200mm	Test terminated in increment 5
	where the total number	17,25	65,90,45/30mm	200/180mm	Test terminated in increment 5
	of blows,	17,25	35,60,60,45/30mm	200/255mm	Test terminated in increment 6
	excluding the seating drive,	17,25	25,30,35, 110/70mm	200/295mm	Test terminated in increment 6
	reaching 200.				26

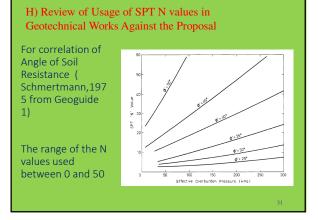
For Private Contract: For Proposed Research Complex for Hong Kong Shue Yan University:									
Seating Drive: any of increment of 75mm penetration is not achieved after 100 Test Drive: any of increment of 75mm penetration is not achieved	Seating Drive	Test Drive	Summary	Remarks					
	100/50mm		100/50mm	Test terminated in increment 1					
	17,25	100/50mm	100/50mm	Test terminated in increment 3					
	17,25	65,90,45/30mm	200/180mm	Test terminated in increment 5					
after 100 blows of the drive hammer OR where the total	17,25	35,60,60,45/30mm	200/255mm	Test terminated in increment 6					
number of blow, excluding the seating drive, reaching 200.	17,25	25,30,35,90/70mm	200/295mm	Test terminated in increment 6					

G) Proposal for Consistent Termination Crite	G
--	---

It is proposed that two standard and requirements.

- > The Option A is utilized for general purpose like preliminary study or slope works etc.,
- \succ and the Option B is used for the foundation design purpose.

Under any special circumstances, Engineer still free to tailor the operational methods at the Particular Specification to fit the requirement for their specific contracts;


The above proposal is based on the local experience that most of the preliminary study and general site investigation purpose needs to have the N value of not greater than 100;

♦For foundation purpose like correlating parameters for pile, soil stiffness and deformation, the N value of 200 will be adopted.

28

Option A		tion Meth	iou.		
	Seating Drive	Test Drive	Summary	Reporting Format	Remarks
For preliminary study and	17,25	25,27,22,23	N=97	17,25 25,27,22,23 N=97	Full penetration
general Purpose	17,25	38,62/50mm	100/125mm	17,25 38,62/50mm (100/125mm)	Test terminated in increment 2 in the test drive.
	17,25	35,27,38/30mm	100/180mm	17,25 35,27,38/30mm (100/180mm)	Test terminated in increment 3 in the test drive.
Seating Drive: 50 blows	27,23/35mm	25,27,22,23	N=97	17,35/35mm 25,27,22,23 N=97	Test drive commenced after 50 blows in the seating drive.
Test drive: 100 blows	20/35mm	35,27,38/30mm	100/180mm	17/35mm 25,27,38/30mm (100/180mm)	Test drive commenced after 50 blows in seating drive. Test terminated in increment3 in the test drive.

H) Proposal for Operational Method: Option B Seating Drive Text Drive Summary Reporting Format Remarks										
Option B	Seating Drive	Test Drive	Summary	Reporting Format	Remarks					
For	27,23/35mm	35,27,32,31	N=125	17,25 25,27,32,31 N=125	Test drive commenced after completion of 50 blows in the seating drive.					
Foundation Design	50/20mm	38,162/50mm	200/125mm	50/20mm 38,162/50mm (200/125mm)	Test drive commenced after completion of 50 blows in the seating drive: test terminated in increment 2 in the test drive					
Purpose Seating Drive: 50 blows Test Drive: 200 blows	50/20mm	200/40mm	200/40mm	50/20mm 200/40mm (200/40mm)	Test drive commenced after completion of 50 blows in seating drive; test terminated in increment 1 in the test drive.					
	17, 25	38,162/50mm	200/125mm	17,25 38,162/50mm (200/125mm)	Test terminated in increment 2 in the test drive.					
	17,25	25,30, 145/50mm	200/200mm	17,25 25,30,145/50mm (200/200mm)	Test terminated in increment 3 in the Test Drive.					
	17,25	65,90,45/30mm	200/180mm	17,25 69,90,45/30mm (200/180mm)	Test terminated in increment 3 in the test drive.					
	17,25	35,60,60,45/30mm	200/255mm	17,25 35,60,60,45/30mm (200/255mm)	Test terminated in increment 4 in the test drive.					
	17,25	25,30,35,110/70mm	200/295mm	17,25 25,30,35,110/70mm (200/295mm)	Test terminated in increment 4 in the test drive.					

or deformation of	Drained Young's Modulus of Weathered Granites (MPa)	Range of SPT N Values	Basis	Reference
oil in foundations,	0.2 N - 0.3 N	35 250	Plate loading tests at bottom of hand-dug caissons	Sweeney & Ho (1982)
he table cab be	0.6 N - 1 N	59 - 200	Pile and plate loading tests	Chan & Davies (1984)
	1.8 N - 3 N	77 - >200	Pile loading tests	Fraser & Lai (1982)
eferred for	0.6 N - 1.9 N	12 - 65	Pile loading tests	Evans et al (1982)
orrelation of Trained Young's	0.4 N -0.8 N 0.55 N - 0.8 N < 1.05 N	50-100 100 - 150 > 150	Pile loading tests	Holt et al (1982)
	1 N - 1.4 N	50 - 100	Pile loading tests	Leung (1988)
/Iodulus and N	2 N - 2.5 N	25 - 160	Pile loading tests	Lam et al (1994)
alues in Weathered	3 N On	20 - 200	Pile loading tests	Pickles et al (2003)
Franite in Hong	1 N - 1.2 N ex	ception N/A	Settlement monitoring of buildings on pile foundations	Ku et al (1985)
ong	1 N	50 - 100	Settlement monitoring of buildings on pile foundations	Leung (1988)
	0.7 N - 1 N	50 - 75	Back analysis of settlement of Bank of China Building	Chan & Davies (1984)
It is obvious that most of the	3 N	47 - 100	Horizontal plate loading tests in hand-dug caissons (unload-reload cycle)	Whiteside (1986)
correlations with	0.6 N - 1.9 N (average 1.2 N)	47 - 100	Horizontal plate loading tests in hand-dug caissons (initial loading)	Whiteside (1986)
SPT N values are	0.8 N 1.6 N at depth	up to 170	Back analysis of retaining wall deflection	Humpheson et al (1986, 1987)
ranged between 0 and 200	1 N	8 - 10 (fill and marine deposits)	Back analysis of movement of diaphragm wall of Dragon Centre	Chan (2003)
	1.5 N – 2 N	35 - 200 (CDG)		
	1.1 N 1.4 N 1.7 N	25 - 50 50 - 75 75 - 150	Multiple well pumping test and back analysis of retaining wall deflection	Davies (1987)

Ultimate Shaft Friction In Different Piles in Saprolite

GEO (1996) also provides for the estimation of ultimate shaft friction for various types of piles in granular soils as follows :

Type of Pile	Estimated pile resistance		
Small-displacement	1.5~2.0N		
(e.g. H-piles)	(up to N=50)		
Large-displacement driven pile	4.5N		
Bored pile	1.0~1.5N		
Large-diameter bored pile and barette lpreliminary design)	s 0.8~1.4N		

It should be noted that all the N values should be limited to 200 except small displacement piles

Shaft Grout Tested Barrettes in Tung Chung Development – Phase One							
Test Barrette Design							
For the purpose of designing the test barrette, the ultimate load approach based on Standard Penetration Test (SPT N) results is used to determine barrette ultimate shaft friction and end- tant and the standard standard alluving match CDG has been derived as follows::ionic for a shaft ground barrette founded in							
Ultimate shaft friction in alluvium = 6.0 x N kPa to a limit of 260kPa							
Ultimate shaft friction in CDG = 3.5 x N kPa to a limit of 200kPa							
Ultimate end bearing resistance in CDG = 10.0 x N kPa to a limit of 2400kPa							
Where, N is the Standard Penetration Test (SPT) 'N' value (blows/300mm) at any depth in alluviur CDG.	m and						
For shaft friction, max N valve can be used by Alluvium= 44; CDG=58,							
or end bearing resistance, max N valve can be used by CDG=24 II SPT N values adopted are not greater than 200							
Question: What are the types of hammers being used for the N vales from the tables? 34							

I) Correction for SPT N Value

Why is it required for SPT Correction?

*When SPT empirical design correlations were developed from 1940 to 1960, more professionals and experts believe that $N_{\rm 60}$ values should be standardized.

 $\mbox{+}\mbox{Uncorrected N}$ values can vary by a factor of 2 in extreme case.

 $\ensuremath{\bigstar}$ The N_{60} value should be promoted to be used around the world as the unified data for the SPT operation with different standards.

*For seismic engineering, the N₆₀ value has been further corrected to the $(N_1)_{60}$ value, and it has widely used to estimate the potential liquefaction in sandy formation.

35

Energy Loss For SPT Blowing

It has be recognized that the effective energy delivered is far less, and it may be due to:

- energy lost due to friction from the component or lifting rods;
- energy lost in form of heat and noise during impact;
- energy lost in rod with low stiffness or bending;
- Inertia energy absorbed by over-heavy rods and anvil

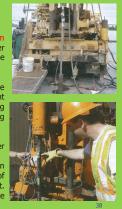
SPT Analyzer

Why measure the SPT energy transferred by the SPT hammer?

The several types of SPT hammers conducted the test with varying efficiencies that influence the N value.

The measured N value is required for standardization by multiplying it by the ratio of measured energy transferred to rod to 60% of the theoretical potential energy.

The standardization compensates for the variability of the efficiencies of the different hammer types, and improves the reliability of soil strength estimates in geotechnical applications.


SPT Analyzer

Instrumentation Performing The SPT analyzer is furnished with 0.6m sub section of an SPT rod (AW, NW, or other type) instrumented with two strain gauge bridges, and precisely calibrated before;

Once in the field, two accelerometers are bolted to the rod section. The instrument section is inserted at the top of the drill string between the hammer and the existing sampling rods;

The rod is connected to the SPT analyzer via cable or wireless transmitter;

The strain gages and accelerometers obtain the force and velocity signals for calculation of the transferred energy during the SPT test. The energy is displayed in real time on the SPT analyzer screen.

Pile Dynamic Analyzer- Energy Measurement

Alternatively, the Pile Dynamic Analyzer can be used to measure the energy transferred from the hammer to the SPT rods based on the recommendation from ASTM D46633-86.

The formula used:

 $\operatorname{Er} = \int_{a}^{b} F(t)V(t)dt$ Where: $\operatorname{Er} = \operatorname{the energy delivered to the rod}_{a} = \operatorname{the time energy transfer begins}_{b} = \operatorname{the time of maximum energy transfer}_{F} = \operatorname{force}_{V} = \operatorname{velocity}$

SPT Correction Factors

Hammer Energy Efficiency Correction (E_m): ↔When the hammer strikes the rods, a compression wave travels down the rods and is reflected as tension wave after it reaches the bottom of the spilt spoon.

♦When the tension wave travels back to the hammer, the hammer is lifted and energy transfer essentially stops. Incomplete hammer energy is transferred when rods are less than 10m (30 feet).

Em is also named as the Rod Energy Transfer Ratio (ER) by some textbooks,

Em=ER=Energy_{measured}/Etheoretical
 Where E theoretical is the free-fall hammer energy (0.76x 63.5x9.82=473.43)

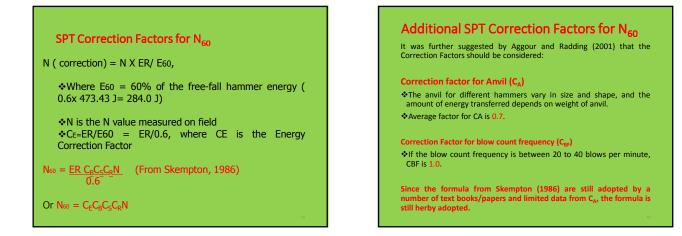
SPT Correction Factors

Borehole Diameter Correction (C_{B}) :

- Only important when ID is 152mm (6 inches) or greater.
- Large inside diameters of boreholes reduce confinement making it easier for spoon to penetrate soil.

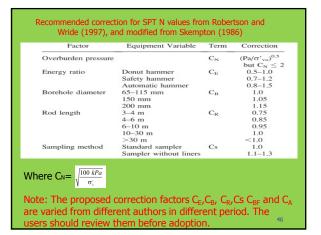
Sampler Correction (Cs):

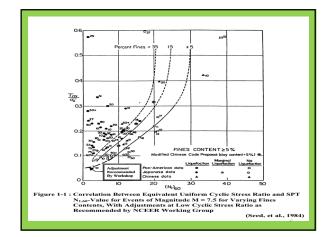
- The aluminum liner is generally used for sampling.
- In case the liner is not used, the increased inner diameter will sustain less friction and the measured SPT N value will be increased.

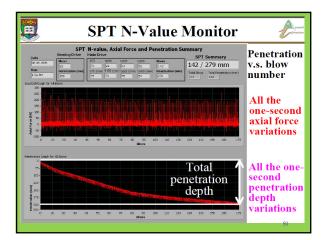

Rod Length Correction (C_R): ↔ No correction if rod length is longer than 10m.

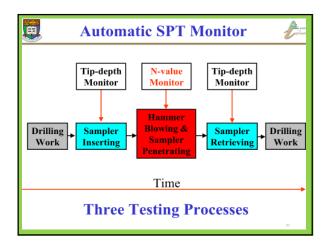
Human Error

Working attitude and workmanship? Cheating? Carelessness?


SPT Correction Factors for Field Operation


Factor	Equipment Variables	Value
Borehole diameter	2.5 - 4.5 in (65 - 115 mm)	1.00
factor, CB	6 in (150 mm)	1.05
- 12 - 12 - 12 - 12 - 12 - 12 - 12 - 12	8 in (200 mm)	1.15
Sampling method	Standard sampler	1.00
factor, C _S	Sampler without liner (Not recommended)	1.20
Rod length factor, C_R	10 - 13 ft (3 - 4 m)	0.75
	13 - 20 ft (4 - 6 m)	0.85
	20 - 30 ft (6 - 10 m)	0.95
	> 30 ft (> 10 m)	1.00


_			n for SP1					<u> </u>		-	Report No:	
	General Informatio	n for Equipmen									Date:	12-Oct-1
	Type of Hammer		Auto Trip Rele	ase Hamme	f							
	Rod Energy Transfe		75.00%									
	Diamter of Drill Roo			mm								
4	SPT Liner		Yes	-					LER, AND RO oton, 1986)	D CORRECTIO	IN FACTORS	
-		-	-			(Auap	Leu II OI	in Skeinig	pton, 1980)			
	Field Operation Inf	ormation				Borehole diameter 65-115n factor, C ₈ 150mm 200mm				uipment Variables		
	Drilling Method		Rotary						65-115mm	1 1.05		
2	Flushing Method		Water						150mm			
3	Orientation of Hole		Vertical						200mm	1.15		
4	Diameter of Hole	Depth From	Depth to									
ə	203mm	0	0	m					Standard san	1		
b	165mm	0	0	m		factor, C ₅		Sampler with	1.2			
c	141mm	0	6	m					(not recomm			
d	118mm	6	12	m								
	89mm	12	16	m		Rod le	Rod length factor, C. 3-4m					0.75
-									4-6m			0.85
-									6-10m			0.95
D	Ground Information and Overburden Data					>10m					1	
	Ground Level for Borebo			mPD								
2	Depth of Groundwa	ter Table	2.5	m								
	Groundwater Table			mPD		-	-	-				
4	Bulk density of Soil		19	KN/m3								
5	Density of Groundy	vter	10	KN/m3								
	1		1	1.02								
SPT No	Depth of Hole from Ground Level(m)	Level for Hole from Ground Level(mPD)	Depth of SPT from Ground Level(m)		N Value	Ga	Cs	Ca	N _{so} value	Eff Vertical Stress (KPa)	C _N =(100/Eff Vert Stress)^0.5 where Max for CN =1.7	(N,)60 val
_												
1	0.5	3.5	0.5	3.5	12	1	1	0.75	11	9.50	1.70	18.70 28.90
2	1	3	1	3	18	1	1	0.75	17	19.00	1.70	28.90


J) Previous Development for Automation Monitoring For SPT in HK

The study for SPT automation measurement for N blow count and the monitor devices for penetration depth had been conducted under the Agreement No CB20030021 of the Housing Authority Research Fund in 2005. It is now under US Patent in 2007.

It is worthwhile to continue the development in this aspect. Alternatively, it is suggested that the automatic hammer from overseas should be adopted in replacement of the local auto-trip release trip hammer for ease of application.

DATE 29-06-2005

ENDING TIME 3:23 PM

SHOCK FORCE (Å

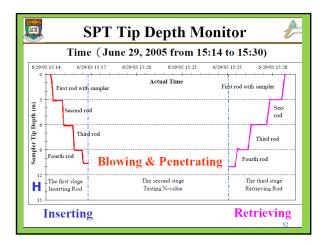
ENERGY EFFICIENCY (%

GINNING TIME 3:21 PM

SEATING DRIVE

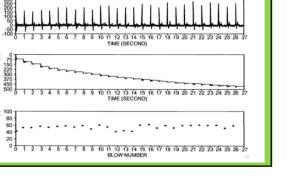
BLOW

PENETRATION (r 150


MAIN DRIVE nm) 875(mr 75

TOTAL BLOW

N150 N225 N300 BLOWS


m) S150(mm) S225(mm) S300(mm) PENETRATION (mr 75 75 75 300

TOTAL PENETRATION (mm

- *As there is no standard requirement for typical SPT equipment and operation around the world, the N value can be varied drastically from place to place even if the same soil strata with same stiffiness/strength are tested.
- The SPT termination criteria with blow count methods vary locally amongst different Governmental Departments and consultants, and this causes unnecessary confusion in field operation.
- The N₆₀ value has been built based on correction for different SPT equipment and field operations. It should have be promoted for adoption. However, there is no further development for improvement locally and around the world for years.
- The N₆₀ values are required to fit the more accurate design purpose. However, it lacks of related references in design field in Hong Kong and around the world.

L) Recommendations

- It is recommended that the Option A and B in order to standardize the termination criteria with N blow counting methods.
- No matter liner is required or not, the aluminum liner should always be used during SPT blowing. The 300mm long liner should be reserved but the 150mm one can be discarded. This should be treated as the standard requirement.
- Core recovery for soil for each of the SPT drives respect to the total length or 450mm should be recorded in borelog.
- More tests should be conducted locally in order to get the agreed Rod Energy Transfer ratio (ER) for the automatic trip release hammer used in Hong Kong such that it can be recorded at borelog.
- Review different sources of references for adopting the different SPT correction factors, and carry out our own tests to get the more reliable factors.

L) Recommendations – Cont'd

- Bore log should clearly describe the equipment used including type of hammer, sizes of casing and drill rod etc. Besides, the log should include the correction factors used and with calculated N60 and (N1)60 values.
- ♦As (N1)60 has been widely used in predicting potential liquefaction in sandy formation, it is also recommended to be added to borelog despite it is not commonly used.
- Consider N₆₀ values to be included in all ground investigation reports for projects despite the adoption of it in design has not yet been commonly used.
- The local government and geotechnical professionals should seek for adoption of Nso with effort and promote the establishment for standardization at the major international conferences.
- **More researches** for application of N₆₀ and (N₁)₆₀ are required.

L) Recommendations – Cont'd

Introduce the automatic hammer that is used overseas to Hong Kong for future development and application.

Continue the development for the automation for N Blow count and device for SPT penetration depth. However, it should be considered to incorporate of the automatic hammer from overseas for ease of application and efficiency. End

Thank You for Your Patience